Introduction to dominated edge chromatic number of a graph
نویسندگان
چکیده
We introduce and study the dominated edge coloring of a graph. A graph \(G\), is proper \(G\) such that each color class by at least one \(G\). The minimum number colors among all called chromatic number, denoted \(\chi_{dom}^{\prime}(G)\). obtain some properties \(\chi_{dom}^{\prime}(G)\) compute it for specific graphs. Also examine effects on \(\chi_{dom}^{\prime}(G)\), when modified operations vertex Finally, we consider \(k\)-subdivision these kind
منابع مشابه
total dominator chromatic number of a graph
given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...
متن کاملDistinguishing Edge Chromatic Number
An adjacent vertex distinguishing edge-coloring or an avd-coloring of a simple graph G is a proper edge-coloring of G such that no pair of adjacent vertices meets the same set of colors. We prove that every graph with maximum degree ∆ and with no isolated edges has an avd-coloring with at most ∆ + 300 colors, provided that ∆ > 1020. AMS Subject Classification: 05C15
متن کاملInjective Edge Chromatic Index of a Graph
Three edges e1, e2 and e3 in a graph G are consecutive if they form a path (in this order) or a cycle of length three. An injective edge coloring of a graph G = (V,E) is a coloring c of the edges of G such that if e1, e2 and e3 are consecutive edges in G, then c(e1) 6= c(e3). The injective edge coloring number χ ′ i(G) is the minimum number of colors permitted in such a coloring. In this paper,...
متن کاملThe set chromatic number of a graph
For a nontrivial connected graph G, let c : V (G) → N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) 6= NC(v) for every pair u, v of adjacent vertices of G. The minimum number of colors required of such a coloring is calle...
متن کاملThe Chromatic Number of a Signed Graph
In 1982, Zaslavsky introduced the concept of a proper vertex colouring of a signed graph G as a mapping φ : V (G) → Z such that for any two adjacent vertices u and v the colour φ(u) is different from the colour σ(uv)φ(v), where is σ(uv) is the sign of the edge uv. The substantial part of Zaslavsky’s research concentrated on polynomial invariants related to signed graph colourings rather than on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2021
ISSN: ['1232-9274', '2300-6919']
DOI: https://doi.org/10.7494/opmath.2021.41.2.245